Let $A = \{1, 2, 3, 4\}$ and $R$ be a relation in $A$ given by $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$. Then $R$ is
Reflexive
Transitive
An equivalence relation
none of these
Let $N$ denote the set of all natural numbers and $R$ be the relation on $N \times N$ defined by $(a, b)$ $R$ $(c, d)$ if $ad(b + c) = bc(a + d),$ then $R$ is
Let $R$ and $S$ be two equivalence relations on a set $A$. Then
Let $r$ be a relation from $R$ (Set of real number) to $R$ defined by $r$ = $\left\{ {\left( {x,y} \right)\,|\,x,\,y\, \in \,R} \right.$ and $xy$ is an irrational number $\}$ , then relation $r$ is
Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. $A$ relation $R:A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then ${R^{ - 1}}$ is defined by
Determine whether each of the following relations are reflexive, symmetric and transitive:
Relation $R$ in the set $A$ of human beings in a town at a particular time given by
$R =\{(x, y): x$ is wife of $y\}$