Let $n(U) = 700,\,n(A) = 200,\,n(B) = 300$ and $n(A \cap B) = 100,$ then $n({A^c} \cap {B^c}) = $

  • A

    $400$

  • B

    $600$

  • C

    $300$

  • D

    $200$

Similar Questions

If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:

$D=\{f, g, h, a\}$

Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)

Let $U=\{1,2,3,4,5,6,7,8,9,10\}$ and $A=\{1,3,5,7,9\} .$ Find $A^{\prime}$

If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:

$A=\{a, b, c\}$

Given $n(U) = 20$, $n(A) = 12$, $n(B) = 9$, $n(A \cap B) = 4$, where $U$ is the universal set, $A$ and $B$ are subsets of $U$, then $n({(A \cup B)^C}) = $