Let $n(U) = 700,\,n(A) = 200,\,n(B) = 300$ and $n(A \cap B) = 100,$ then $n({A^c} \cap {B^c}) = $
$400$
$600$
$300$
$200$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$A^{\prime}$
If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Let $U$ be the universal set and $A \cup B \cup C = U$. Then $\{ (A - B) \cup (B - C) \cup (C - A)\} '$ is equal to
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$C=\{a, c, e, g\}$