Let $f(x)=\frac{x+1}{x-1}$ for all $x \neq 1$. Let $f^1(x)=f(x), f^2(x)=f(f(x))$ and generally $f^n(x)=f\left(f^{n-1}(x)\right)$ for $n>1$. Let $P=f^1(2) f^2(3) f^3(4) f^4(5)$ Which of the following is a multiple of $P$ ?

  • [KVPY 2012]
  • A

    $125$

  • B

    $375$

  • C

    $250$

  • D

    $147$

Similar Questions

Let $f ( x )$ be a quadratic polynomial with leading coefficient $1$ such that $f(0)=p, p \neq 0$ and $f(1)=\frac{1}{3}$. If the equation $f(x)=0$ and $fofofof (x)=0$ have a common real root, then $f(-3)$ is equal to $........$

  • [JEE MAIN 2022]

solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$

Which pair $(s)$ of function $(s)$ is/are equal ?

where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.

Let $f: R \rightarrow R$ be a continuous function such that $f\left(x^2\right)=f\left(x^3\right)$ for all $x \in R$. Consider the following statements.

$I.$ $f$ is an odd function.

$II.$ $f$ is an even function.

$III$. $f$ is differentiable everywhere. Then,

  • [KVPY 2019]

Let $f: R \rightarrow R$ be a function defined by $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ Then, at $x=0, f$ is

 

  • [KVPY 2019]