Let $Z$ be the set of all integers,
$\mathrm{A}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+\mathrm{y}^{2} \leq 4\right\}$
$\mathrm{B}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}: \mathrm{x}^{2}+\mathrm{y}^{2} \leq 4\right\} \text { and }$
$\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathbb{Z} \times \mathbb{Z}:(\mathrm{x}-2)^{2}+(\mathrm{y}-2)^{2} \leq 4\right\}$
If the total number of relation from $\mathrm{A} \cap \mathrm{B}$ to $\mathrm{A} \cap \mathrm{C}$ is $2^{\mathrm{p}}$, then the value of $\mathrm{p}$ is :
$16$
$25$
$49$
$9$
If $d$ is the distance between the centres of two circles, ${r_1},{r_2}$ are their radii and $d = {r_1} + {r_2}$, then
If the circles ${x^2} + {y^2} + 2x + 2ky + 6 = 0$ and ${x^2} + {y^2} + 2ky + k = 0$ intersect orthogonally, then $k$ is
Circles ${x^2} + {y^2} + 2gx + 2fy = 0$ and ${x^2} + {y^2}$ $ + 2g'x + 2f'y = $ $0$ touch externally, if
If the variable line $3 x+4 y=\alpha$ lies between the two circles $(x-1)^{2}+(y-1)^{2}=1$ and $(x-9)^{2}+(y-1)^{2}=4$ without intercepting a chord on either circle, then the sum of all the integral values of $\alpha$ is .... .
The equation of the circle which passes through the point of intersection of circles ${x^2} + {y^2} - 8x - 2y + 7 = 0$ and ${x^2} + {y^2} - 4x + 10y + 8 = 0$ and having its centre on $y$ - axis, will be