જો $\lambda \in R$ માટે સુરેખ સમીકરણ સહિતા
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$ નો ઉકેલ શક્ય નથી
બરાબર $\lambda$ ની એક ઋણ કિમત માટે
બરાબર $\lambda$ ની એક ધન કિમત માટે
$\lambda$ ની બધી કિમત માટે
$\lambda$ ની બરાબર બે કિમતો માટે
જો$ |A|$ એ શ્રેણિક $A$ કે જેની કક્ષા $ 3 $ હોય તેનો નિશ્રાયક દર્શાવે છે , તો$ |-2A|=$
જો $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. તો $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|= . . . $
$\left| {\,\begin{array}{*{20}{c}}{{a_1}}&{m{a_1}}&{{b_1}}\\{{a_2}}&{m{a_2}}&{{b_2}}\\{{a_3}}&{m{a_3}}&{{b_3}}\end{array}\,} \right| = $
જો $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ એ ત્રણ અંકોની સંખ્યા છે કે જે $k$ વડે વિભાજ્ય છે અને $\Delta = \left| {\begin{array}{*{20}{c}}
{{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\
{{A_2}}&{{B_2}}&{{C_2}} \\
{{A_3}}&{{B_3}}&{{C_3}}
\end{array}} \right|$ હોય તો $\Delta $ એ . . વડે વિભાજ્ય છે .
જો સમીકરણની સંહતિ, $x + 2y - 3z = 1$, $(k + 3)z = 3,$ $(2k + 1)x + z = 0$ એ સુસંગત ન હોય , તો $k$ ની કિમત મેળવો.