જો $n(A)=3$ અને $n(B)=2$ હોય તેવા બે ગણો $A$ અને $B$ હોય અને ભિન્ન ઘટકો $x, y$ અને $z$ માટે $(x, 1),(y, 2),(z, 1)$ એ $A \times B$ ના ઘટકો હોય તો $A$ અને $B$ શોધો.
It is given that $n(A)=3$ and $n(B)=2 ;$ and $(x, 1),(y, 2),(z, 1)$ are in $A \times B$
We know that
$A=$ Set of first elements of the ordered pair elements of $A \times B$
$B =$ Set of second elements of the ordered pair elements of $A \times B$
$\therefore x, y,$ and $z$ are the elements of $A ;$ and $1$ and $2$ are the elements of $B$
Since $n(A)=3$ and $n(B)=2$
It is clear that $A=\{x, y, z\}$ and $B=\{1,2\}$
જો $A = \{1,2,3,4......100\}, B = \{51,52,53,...,180\}$ હોય તો $(A \times B) \cap (B \times A)$ ના સભ્યોની સંખ્યા .............. થાય
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $A \times(B \cup C)$
જો $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$તો $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ એ . . . . . બરાબર છે.
જો કાર્તેઝિય ગુણાકાર $A$ $\times$ $A$ ના ઘટકોની સંખ્યા $9$ હોય અને તેમાંના બે ઘટકો $(-1,0)$ અને $(0,1)$ હોય, તો $A$ શોધો તથા $A$ $\times$ $A$ ના બાકીના ઘટકો લખો.
નીચે આપેલાં વિધાનોમાંથી કયું વિધાન સત્ય છે અને કયું વિધાન અસત્ય છે તે જણાવો તથા અસત્ય વિધાન સત્ય બને તે રીતે ફરી લખો : જો $A=\{1,2\}, B=\{3,4\},$ તો $A \times\{B \cap \varnothing\}=\varnothing$ છે.