Let $E$ and $F$ be two independent events. The probability that both $E$ and $F$ happen is $\frac{1}{12}$ and the probability that neither $E$ nor $F$ happens is  $\frac{1}{2}$ , then a value of  $\frac{{P(E)}}{{P\left( F \right)}}$ is

  • [JEE MAIN 2017]
  • A

    $\frac{4}{3}$

  • B

    $\frac{3}{2}$

  • C

    $\frac{1}{3}$

  • D

    $\frac{5}{12}$

Similar Questions

For three non impossible events $A$, $B$ and $C$ $P\left( {A \cap B \cap C} \right) = 0,P\left( {A \cup B \cup C} \right) = \frac{3}{4},$ $P\left( {A \cap B} \right) = \frac{1}{3}$ and $P\left( C \right) = \frac{1}{6}$.

The probability, exactly one of $A$ or $B$ occurs but $C$ doesn't occur is 

A bag contains $3$ white and $2$ black balls and another bag contains $2$ white and $4 $ black balls. A ball is picked up randomly. The probability of its being black is

The probability of happening an event $A$ is $0.5$ and that of $B$ is $0.3$. If $A$ and $B$ are mutually exclusive events, then the probability of happening neither $A$ nor $B$ is

  • [IIT 1980]

Two dice are thrown. The events $A, B$ and $C$ are as follows:

$A:$ getting an even number on the first die.

$B:$ getting an odd number on the first die.

$C:$ getting the sum of the numbers on the dice $\leq 5$

Describe the events $B$ or $C$

A die has two faces each with number $^{\prime}1^{\prime}$ , three faces each with number $^{\prime}2^{\prime}$ and one face with number $^{\prime}3^{\prime}$. If die is rolled once, determine $P($ not $3)$