Let $a$ , $b$ , $c$ are roots of equation $x^3 + 8x + 1 = 0$ ,then the value of
$\frac{{bc}}{{(8b + 1)(8c + 1)}} + \frac{{ac}}{{(8a + 1)(8c + 1)}} + \frac{{ab}}{{(8a + 1)(8b + 1)}}$ is equal to
$0$
$-8$
$-16$
$16$
The number of the real roots of the equation $(x+1)^{2}+|x-5|=\frac{27}{4}$ is ....... .
The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is
If the inequality $kx^2 -2x + k \geq 0$ holds good for atleast one real $'x'$ , then the complete set of values of $'k'$ is
Consider the equation ${x^2} + \alpha x + \beta = 0$ having roots $\alpha ,\beta $ such that $\alpha \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then
Let $x, y, z$ be positive integers such that $HCF$ $(x, y, z)=1$ and $x^2+y^2=2 z^2$. Which of the following statements are true?
$I$. $4$ divides $x$ or $4$ divides $y$.
$II$. $3$ divides $x+y$ or $3$ divides $x-y$.
$III$. $5$ divides $z\left(x^2-y^2\right)$.