Let ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ and ${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ . If $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ and $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ , then $\frac{P}{{2Q}}$ is equal to

  • A

    $2$

  • B

    $4$

  • C

    $8$

  • D

    $16$

Similar Questions

$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)$ is equal to

Statement $-1$: $\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) = \left( {n + 2} \right){2^{n - 1}}$

Statement $-2$:$\;\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right){x^r}\; = {\left( {1 + x} \right)^n} + nx{\left( {1 + x} \right)^{n - 1}}$

  • [AIEEE 2008]

If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then the value of ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ will be

  • [IIT 1971]

Let $\left( a + bx + cx ^2\right)^{10}=\sum \limits_{ i =0}^{20} p _{ i } x ^{ i }, a , b , c \in N$. If $p _1=20$ and $p _2=210$, then $2( a + b + c )$ is equal to

  • [JEE MAIN 2023]

Let $\left(1+x+2 x^{2}\right)^{20}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{40} x^{40}$ then $a _{1}+ a _{3}+ a _{5}+\ldots+ a _{37}$ is equal to

  • [JEE MAIN 2021]