${a_1},{a_2},.......,{a_{30}}$ એ સમાંતર શ્રેણીમાં છે. $S = \sum\limits_{i = 1}^{30} {{a_i}} $ અને $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $. જો  ${a_5} = 27$ અને $S - 2T = 75$ , તો $a_{10}$ મેળવો.

  • [JEE MAIN 2019]
  • A

    $52$

  • B

    $57$

  • C

    $47$

  • D

    $42$

Similar Questions

સમાંતર શ્રેણીના પદો ${{\text{a}}_{\text{1}}}\text{, }{{\text{a}}_{\text{2}}}\text{, }{{\text{a}}_{\text{3}}}\text{, }......\text{ }$ લો. જો $\frac{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{p}}}{{{a}_{1}}\,+\,\,{{a}_{2}}\,+\,....\,+\,\,{{a}_{q}}}$  $=\,\frac{{{p}^{2}}}{{{q}^{2}}},\,p\,\,\ne \,\,q$ હોય,તો $\,\frac{{{a}_{6}}}{{{a}_{21}}}\,\,=\,\,.......$

કાટકોણ ત્રિકોણની બાજુઓનાં માપ સમાંતર શ્રેણીમાં હોય, તો તેઓ......... ના પ્રમાણમાં છે.

જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં પ્રથમ પાંચ પદ લખો : $a_{n}=(-1)^{n-1} 5^{n+1}$

અહી $a_1, a_2, a_3 \ldots$ એ સમાંતર શ્રેણીમાં છે કે જેથી $\sum_{ k =1}^{12} a _{2 k -1}=-\frac{72}{5} a _1, a _1 \neq 0$. જો $\sum_{ k =1}^{ n } a _{ k }=0$ હોય તો $n$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

પ્રથમ ત્રણ પદો લખો : $a_{n}=2 n+5$