Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta \right) = \tan \,\left( \theta \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta \right) = 1} \right\}$ be two sets. Then
$A = B$
$A \not\subset B$
$B \not\subset A$
$A \subset B$ and $B - A \ne \phi $
If $\sin \theta = \sqrt 3 \cos \theta , - \pi < \theta < 0$, then $\theta = $
The number of distinct solutions of the equation $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ in the interval $[0,2 \pi]$ is
All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation
Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -
If $\sin 2x + \sin 4x = 2\sin 3x,$ then $x =$