Let $\alpha $ and $\beta $ are roots of $5{x^2} - 3x - 1 = 0$ , then $\left[ {\left( {\alpha  + \beta } \right)x - \left( {\frac{{{\alpha ^2} + {\beta ^2}}}{2}} \right){x^2} + \left( {\frac{{{\alpha ^3} + {\beta ^3}}}{3}} \right){x^3} -......} \right]$ is

  • A

    $x^2 + 3x -5$

  • B

    $x^2 -3x -5$

  • C

     $-x^2 + 3x + 5$

  • D

    none of these

Similar Questions

The two roots of an equation ${x^3} - 9{x^2} + 14x + 24 = 0$ are in the ratio $3 : 2$. The roots will be

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]

If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-

The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are

  • [IIT 1989]

If $\alpha ,\beta $are the roots of ${x^2} - ax + b = 0$ and if ${\alpha ^n} + {\beta ^n} = {V_n}$, then