In which of the following functions is Rolle's theorem applicable ?
$f(x) = \left\{ \begin{array}{l}
x,\,\,\,\,\,\,\,0 \le x < 1\\
0,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\,
\end{array} \right.on\,\,\left[ {0,1} \right]$
$f(x) = \left\{ \begin{array}{l}
\frac{{\sin x}}{x},\,\,\,\,\,\,\, - \pi \le x < 0\\
0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0\,\,\,\,\,\,
\end{array} \right.on\,\,\left[ { - \pi ,0} \right]$
$f(x) = \frac{{{x^2} - x - 6}}{{x - 1}}\,\,\,\,\,on\left[ { - 2,3} \right]$
$f(x) = \left\{ \begin{array}{l}
\frac{{{x^3} - 2{x^2} + 5x + 6}}{{x - 1}},\,\,\,\,if\,\,x \ne 0\,\,\,\,\,\,\\
- 6,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,if\,\,x = 1\,\,\,\,\,\,\,\,\,\,\,\,\
\end{array} \right.on\left[ {-2,3} \right]$
Let $f(x)$ be a function continuous on $[1,2]$ and differentiable on $(1,2)$ satisfying
$f(1) = 2, f(2) = 3$ and $f'(x) \geq 1 \forall x \in (1,2)$.Define $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ then the greatest value of $g(x)$ on $[1,2]$ is-
If the function $f(x) = 2x^2 + 3x + 5$ satisfies $LMVT$ at $x = 3$ on the closed interval $[1, a]$ then the value of $a$ is equal to
Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval
Let $f(x)$ satisfy all the conditions of mean value theorem in $[0, 2]. $ If $ f (0) = 0 $ and $|f'(x)|\, \le {1 \over 2}$ for all $x$ in $[0, 2]$ then
Let $f(x) = 8x^3 - 6x^2 - 2x + 1,$ then