In the adjotning flgure, $PS$ is diemeter of a circle and $PS$ $=12$. $P Q=Q R=R S$ Semicircles are drawn with dinmeter $\overline{\text { PQ }}$ and $\overline{QS}$. Find the perimeter and the area Find the perimeter and the arce of the shaded region. $(\pi=3.14)$
Here, $PS =12 cm$ and $PQ = QR = RS$
$\therefore PO = gR = RS =\frac{12}{3}=4 cm$
The radii of semicircles with diameters $\overline{ PS }, \overline{ QS }$ and $\overline{ PQ }$ are
$r_{1}=\frac{ PS }{2}=\frac{12}{2}=6 cm$
$r_{2}=\frac{g S}{2}=\frac{4+4}{2}=4 cm$ and
$r_{3}=\frac{ PQ }{2}=\frac{4}{2}=2 cm$ respectively.
Perimeter of the shaded region
$=$ Sum of the lengths of all the three semicircular arcs
$=\pi r_{1}+\pi r_{2}+\pi r_{3}$
$=\pi\left(r_{1}+r_{2}+r_{3}\right)$
$=3.14(6+4+2)$
$=37.68 cm$
Area of the shaded region
$=$ Area of the semicircle with radius $r_{1}$
$+$ Area of the semicircle with radius $r_{3}$
$-$ Area of the semicircle with radius $r_{2}$
$=\frac{1}{2} \pi r_{1}^{2}+\frac{1}{2} \pi r_{3}^{2}-\frac{1}{2} \pi r_{2}^{2}$
$=\frac{1}{2} \pi\left(r_{1}^{2}+r_{3}^{2}-r_{2}^{2}\right)$
$=\frac{1}{2} \times 3.14\left(6^{2}+2^{2}-4^{2}\right)$
$=\frac{1}{2} \times 3.14 \times 24$
$=37.68 cm ^{2}$
Thus, the perimeter of the shaded region is $37.68 cm$ and its area is $37.68 cm ^{2}$
The area of the circle that can be inscribed in a square of side $6 \,cm$ is (in $cm ^{2}$)
In $\odot( O ,\, 5.6), \overline{ OA }$ and $\overline{ OB }$ are radii perpendicular to each other. Then, the difference of the area of the minor sector formed by minor $\widehat{ AB }$ and the corresponding minor segment is $\ldots \ldots \ldots \ldots cm ^{2}$.
With respect to the given diagram, which of the following correctly matches the information in Part $I$ and Part $II$ ?
Part $I$ | Part $II$ |
$1.$ $\overline{ OA } \cup \overline{ OB } \cup \widehat{ APB }$ | $a.$ Major sector |
$2.$ $\overline{ AB } \cup \widehat{ AQB }$ | $b.$ Minor segment |
$3.$ $\overline{ AB } \cup \widehat{ APB }$ | $c.$ Minor sector |
$4.$ $\overline{ OA } \cup \overline{ OB } \cup \widehat{ AQB }$ | $d.$ Major segment |
Will it be true to say that the perimeter of a square circumscribing a circle of radius $a \,cm$ is $8 a \, cm ?$ Give reasons for your answer.
If the radius of a circle is increased by $10 \%,$ its area will increase by $\ldots \ldots \ldots . \%$