Colum $I$ | Colum $II$ |
$(A)$ Distance travelled in $3\,s$ | $(p)$ $-20$ units |
$(B)$ Displacement in $1\,s$ | $(q)$ $15$ units |
$(C)$ Initial acceleration | $(r)$ $25$ units |
$(D)$ Velocity at $4\,s$ | $(s)$ $-10$ units |
A person sitting in a moving train with his face towards the engine, throws a coin vertically upwards. The coin falls ahead of person. The train:
Explain the acceleration.
Mark the correct statements for a particle going on a straight line
The acceleration (a)-time $(t)$ graph for a particle moving along a straight starting from rest is shown in figure. Which of the following graph is the best representation of variation of its velocity $(v)$ with time $(t)$ ?
A particle moves in a straight line so that its displacement $x$ at any time $t$ is given by $x^2=1+t^2$. Its acceleration at any time $\mathrm{t}$ is $\mathrm{x}^{-\mathrm{n}}$ where $\mathrm{n}=$ . . . . .