In each of the following numbers rationalise the denominator
$\frac{30}{5 \sqrt{3}-3 \sqrt{5}}$
$\frac{30}{5 \sqrt{3}-3 \sqrt{5}}=\frac{30}{5 \sqrt{3}-3 \sqrt{5}} \times \frac{5 \sqrt{3}+3 \sqrt{5}}{5 \sqrt{3}+3 \sqrt{5}}$
$=\frac{30(5 \sqrt{3}+3 \sqrt{5})}{(5 \sqrt{3})^{2}-(3 \sqrt{5})^{2}}$
$=\frac{30(5 \sqrt{3}+3 \sqrt{5})}{75-45}$
$=\frac{30(5 \sqrt{3}+3 \sqrt{5})}{30}=5 \sqrt{3}+3 \sqrt{5}$
Simplify
$\frac{11^{\frac{1}{3}}}{11^{\frac{1}{5}}}$
Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$ :
$0.2$
Find the value
$\frac{4}{(216)^{-\frac{2}{3}}}+\frac{1}{(256)^{-\frac{3}{4}}}+\frac{2}{(243)^{-\frac{1}{5}}}$
Express $2 . \overline{137}$ in the form $\frac{p}{q} ;$ where $p$ and $q$ are integers and $q \neq 0$
The product of any two irrational numbers is