In each of the following numbers rationalise the denominator

$\frac{30}{5 \sqrt{3}-3 \sqrt{5}}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{30}{5 \sqrt{3}-3 \sqrt{5}}=\frac{30}{5 \sqrt{3}-3 \sqrt{5}} \times \frac{5 \sqrt{3}+3 \sqrt{5}}{5 \sqrt{3}+3 \sqrt{5}}$

$=\frac{30(5 \sqrt{3}+3 \sqrt{5})}{(5 \sqrt{3})^{2}-(3 \sqrt{5})^{2}}$

$=\frac{30(5 \sqrt{3}+3 \sqrt{5})}{75-45}$

$=\frac{30(5 \sqrt{3}+3 \sqrt{5})}{30}=5 \sqrt{3}+3 \sqrt{5}$

Similar Questions

Simplify

$\frac{11^{\frac{1}{3}}}{11^{\frac{1}{5}}}$

Express the following in the form $\frac{p}{q},$ where $p$ and $q$ are integers and $q \neq 0$ :

$0.2$

Find the value

$\frac{4}{(216)^{-\frac{2}{3}}}+\frac{1}{(256)^{-\frac{3}{4}}}+\frac{2}{(243)^{-\frac{1}{5}}}$

Express $2 . \overline{137}$ in the form $\frac{p}{q} ;$ where $p$ and $q$ are integers and $q \neq 0$

The product of any two irrational numbers is