In aqueous solution the ionization constants for carbonic acid are
$K_1 = 4.2 \times 10^{-7}$ and $K_2 = 4.8 \times 10^{-11}$
Select the correct statement for a saturated $0.034\, M$ solution of the carbonic acid.
The concentration of $CO_3^{2-}$ is $0.034\, M.$
The concentration of $CO_3^{2-}$ is greater than that of $HCO_3^-.$
The concentrations of $H^+$ and $HCO_3^-$ are approximately equal.
The concentration of $H^+$ is double that of $CO_3^{2-}.$
Dissociation constant for a monobasic acid is $10^{-4}$ . What is the $pH$ of the monobasic acid ? (If $\%$ dissociation $= 2\,\%$ )
Which of the following will occur if a $0.1 \,M$ solution of a weak acid is diluted to $0.01\,M$ at constant temperature
The $K_a$ of monobasic acid $A, B$ and $C$ are $10^{-6}, 10^{-8}$ and $10^{-10}$ respectively. The concentrations of $A, B$ and $C$ are respectively. $0.1\,M$, $0.01\, M$ and $0.001\, M$. Which of the following is correct for $pOH$ of $A, B$ and $C$ ?
$K _{ a_1,}, K _{ a_2 }$ and $K _{ a_3}$ are the respective ionization constants for the following reactions $(a), (b),$ and $(c)$.
$(a)$ $H _{2} C _{2} O _{4} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{-}$
$(b)$ $HC _{2} O _{4}^{-} \rightleftharpoons H ^{+}+ HC _{2} O _{4}^{2-}$
$(c)$ $H _{2} C _{2} O _{4} \rightleftharpoons 2 H ^{+}+ C _{2} O _{4}^{2-}$
The relationship between $K_{a_{1}}, K_{ a _{2}}$ and $K_{ a _{3}}$ is given as
If the dissociation constant of an acid $HA$ is $1 \times {10^{ - 5}},$ the $pH$ of a $ 0.1$ molar solution of the acid will be approximately