In an increasing geometric progression ol positive terms, the sum of the second and sixth terms is $\frac{70}{3}$ and the product of the third and fifth terms is $49$. Then the sum of the $4^{\text {th }}, 6^{\text {th }}$ and $8^{\text {th }}$ terms is :-
$96$
$78$
$91$
$84$
If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then
If $y = x - {x^2} + {x^3} - {x^4} + ......\infty $, then value of $x$ will be
Find the $10^{\text {th }}$ and $n^{\text {th }}$ terms of the $G.P.$ $5,25,125, \ldots$
Find the sum of the following series up to n terms:
$6+.66+.666+\ldots$
If ${p^{th}},\;{q^{th}},\;{r^{th}}$ and ${s^{th}}$ terms of an $A.P.$ be in $G.P.$, then $(p - q),\;(q - r),\;(r - s)$ will be in