If velocity of light $c$, Planck’s constant $h$ and gravitational constant $G$ are taken as fundamental quantities, then express time in terms of dimensions of these quantities.
$T = kc ^{ x } h ^{ y } G ^{ z }$
${\left[M^{0} L^{0} T\right]=\left[L^{-1}\right]^{x} \times\left[M L^{2} T^{-1}\right]^{y} \times\left[M^{-1} L^{3} T^{-2}\right]^{z}}$
$=\left[M^{y-z} L^{x+2 y+3 z} T^{-x-y-2 z}\right]$
Comparing powers
$y-z=0$
$x+2 y+3 z=1$
$-x-y-2z=1$
$y =\frac{1}{2}, z =\frac{1}{2}, x =-\frac{5}{2}$
$T = kc ^{-\frac{5}{2}} h ^{\frac{1}{2}} B ^{\frac{1}{2}}$
$T =k \sqrt{\frac{h G}{c^{5}}}$
The dimension of the ratio of magnetic flux and the resistance is equal to that of :
Stokes' law states that the viscous drag force $F$ experienced by a sphere of radius $a$, moving with a speed $v$ through a fluid with coefficient of viscosity $\eta$, is given by $F=6 \pi \eta a v$.If this fluid is flowing through a cylindrical pipe of radius $r$, length $l$ and a pressure difference of $p$ across its two ends, then the volume of water $V$ which flows through the pipe in time $t$ can be written as
$\frac{v}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$
where, $k$ is a dimensionless constant. Correct value of $a, b$ and $c$ are
A massive black hole of mass $m$ and radius $R$ is spinning with angular velocity $\omega$. The power $P$ radiated by it as gravitational waves is given by $P=G c^{-5} m^{x} R^{y} \omega^{z}$, where $c$ and $G$ are speed of light in free space and the universal gravitational constant, respectively. Then,
Consider two physical quantities A and B related to each other as $E=\frac{B-x^2}{A t}$ where $E, x$ and $t$ have dimensions of energy, length and time respectively. The dimension of $A B$ is