If two sets $A$ and $B$ have $99$ elements in common, then the number of elements common to the sets $A \times B$ and $B \times A$ is equal to
$2^{99}$
$(99)^2$
$100$
$18$
If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cup C)$
Let $A, B, C$ are three sets such that $n(A \cap B) = n(B \cap C) = n(C \cap A) = n(A \cap B \cap C) = 2$, then $n((A × B) \cap (B × C)) $ is equal to -
State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
If $A$ and $B$ are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs $(x, y)$ such that $x \in A$ and $y \in B.$
Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.