If two sets $A$ and $B$ have $99$ elements in common, then the number of elements common to the sets $A \times B$ and $B \times  A$ is equal to

  • A

    $2^{99}$

  • B

    $(99)^2$

  • C

    $100$

  • D

    $18$

Similar Questions

If $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\},$ then $(A -B) × (B -C)$ is

Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find

$A \times(B \cup C)$

Let $A, B, C$ are three sets such that $n(A \cap  B) = n(B \cap  C) = n(C \cap  A) = n(A \cap  B \cap  C) = 2$, then $n((A × B) \cap  (B × C)) $ is equal to -

State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.

If $A$ and $B$ are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs $(x, y)$ such that $x \in A$ and $y \in B.$

Let $A=\{1,2\}$ and $B=\{3,4\} .$ Write $A \times B .$ How many subsets will $A \times B$ have? List them.