If the vertices $P$ and $Q$ of a triangle $PQR$ are given by $(2, 5)$ and $(4, -11)$ respectively, and the point $R$ moves along the line $N: 9x + 7y + 4 = 0$, then the locus of the centroid of the triangle $PQR$ is a straight line parallel to

  • A

    $PQ$

  • B

    $QR$

  • C

    $RP$

  • D

    $N$

Similar Questions

The points $(1, 3)$ and $(5, 1)$ are the opposite vertices of a rectangle. The other two vertices lie on the line $y = 2x + c,$ then the value of c will be

  • [IIT 1981]

In a $\triangle A B C$, points $X$ and $Y$ are on $A B$ and $A C$, respectively, such that $X Y$ is parallel to $B C$. Which of the two following equalities always hold? (Here $[P Q R]$ denotes the area of $\triangle P Q R)$.

$I$. $[B C X]=[B C Y]$

$II$. $[A C X] \cdot[A B Y]=[A X Y] \cdot[A B C]$

  • [KVPY 2015]

Given three points $P, Q, R$ with $P(5, 3)$ and $R$ lies on the $x-$ axis. If equation of $RQ$ is $x -2y = 2$ and $PQ$ is parallel to the $x-$ axis, then the centroid of $\Delta PQR$ lies on the line

If the middle points of the sides $BC,\, CA$ and $AB$ of the triangle $ABC$ be $(1, 3), \,(5, 7)$ and $(-5, 7)$, then the equation of the side $AB$ is

A variable straight line passes through the points of intersection of the lines, $x + 2y = 1$ and $2x - y = 1$ and meets the co-ordinate axes in $A\,\, \&\,\, B$ . The locus of the middle point of $AB$ is :