If the sum of first $n$ terms of an $A.P.$ is $c n^2$, then the sum of squares of these $n$ terms is
$\frac{n\left(4 n^2-1\right) c^2}{6}$
$\frac{n\left(4 n^2+1\right) c^2}{3}$
$\frac{n\left(4 n^2-1\right) c^2}{3}$
$\frac{n\left(4 n^2+1\right) c^2}{6}$
Five numbers are in $A.P.$, whose sum is $25$ and product is $2520 .$ If one of these five numbers is $-\frac{1}{2},$ then the greatest number amongst them is
If the sum of first $n$ terms of an $A.P.$ is $cn(n -1)$ , where $c \neq 0$ , then sum of the squares of these terms is
If the ${p^{th}}$ term of an $A.P.$ be $\frac{1}{q}$ and ${q^{th}}$ term be $\frac{1}{p}$, then the sum of its $p{q^{th}}$ terms will be
Suppose that all the terms of an arithmetic progression ($A.P.$) are natural numbers. If the ratio of the sum of the first seven terms to the sum of the first eleven terms is $6: 11$ and the seventh term lies in between $130$ and $140$ , then the common difference of this $A.P.$ is