If the straight line $ax + by + c = 0$ always passes through $(1, -2),$ then $a, b, c$ are

  • A

    In $A.P.$

  • B

    In $H.P.$

  • C

    In $G.P.$

  • D

    None of these

Similar Questions

The equations of two equal sides of an isosceles triangle are $7x - y + 3 = 0$ and $x + y - 3 = 0$ and the third side passes through the point $(1, -10)$. The equation of the third side is

  • [IIT 1984]

Two sides of a parallelogram are along the lines $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one of the diagonals of the parallelogram is $11 \mathrm{x}+7 \mathrm{y}=9$, then other diagonal passes through the point:

  • [JEE MAIN 2021]

The diagonal passing through origin of a quadrilateral formed by $x = 0,\;y = 0,\;x + y = 1$ and $6x + y = 3,$ is

  • [IIT 1973]

If in triangle $ABC$ ,$ A \equiv (1, 10) $, circumcentre $\equiv$ $\left( { - \,\,{\textstyle{1 \over 3}}\,\,,\,\,{\textstyle{2 \over 3}}} \right)$ and orthocentre $\equiv$ $\left( {{\textstyle{{11} \over 3}}\,\,,\,\,{\textstyle{4 \over 3}}} \right)$ then the co-ordinates of mid-point of side opposite to $A$ is :

Let $A \equiv (3, 2)$ and $B \equiv (5, 1)$. $ABP$ is an equilateral triangle is constructed on the side of $AB$ remote from the origin then the orthocentre of triangle $ABP$ is