જો ગણ $A$ માં $p$ ઘટકો,ગણ $B$ માં $q$ ઘટકો હોય તો $A × B$ માં . . . ઘટકો છે.
$p + q$
$p + q + 1$
$pq$
${p^2}$
જો $n(A)=3$ અને $n(B)=2$ હોય તેવા બે ગણો $A$ અને $B$ હોય અને ભિન્ન ઘટકો $x, y$ અને $z$ માટે $(x, 1),(y, 2),(z, 1)$ એ $A \times B$ ના ઘટકો હોય તો $A$ અને $B$ શોધો.
જો $A = \{1, 2, 4\}, B = \{2, 4, 5\}, C = \{2, 5\}$, તો $(A -B) × (B -C)$ મેળવો.
જો $A$ અને $B$ બે ગણ હોય તો $A × B = B × A$ થવા માટે. . .
જો $A = \{1,2,3,4......100\}, B = \{51,52,53,...,180\}$ હોય તો $(A \times B) \cap (B \times A)$ ના સભ્યોની સંખ્યા .............. થાય
ધારો કે $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ અને $D=\{5,6,7,8\},$ તો નીચેનાં પરિણામો ચકાસો : $A \times(B \cap C)=(A \times B) \cap(A \times C)$