If the half life period of a reaction is inversely proportional to the initial concentration, the order of the reaction is
$0$
$1$
$2$
$3$
$A_2 + 2\,B \to 2\,AB$
$[A_2]$ | $[B]$ | ${-d\,[A_2]/dt}$ |
$0.1$ | $0.2$ | $1 \times {10^{ - 2}}\,M{s^{ - 1}}$ |
$0.2$ | $0.2$ | $2 \times {10^{ - 2}}\,M{s^{ - 1}}$ |
$0.2$ | $0.4$ | $8 \times {10^{ - 2}}\,M{s^{ - 1}}$ |
Order of reaction w.r.t. $A_2$ and $B$ are respectively
The variation of the rate of an enzyme catalyzed reaction with substrate concentration is correctly represented by graph
In a reaction $A_2B_3(g) \to A_2(g) + \frac{3}{2}B_2(g)$, the pressure increases from $60$ torr to $75$ torr in $2.5\, minutes$. The rate of disappearance of $A_2B_3$ is ........ $torr\, min^{-1}$
For $n^{th}$ order reaction where $(n < 1)$
Which of the following oxides of nitrogen will be the most stable one