If the chord through the point whose eccentric angles are $\theta \,\& \,\phi $ on the ellipse,$(x^2/a^2) + (y^2/b^2) = 1$ passes through the focus, then the value of $ (1 + e)$ $\tan(\theta /2) \tan(\phi /2)$ is
$e + 1$
$e - 1$
$1 - e$
$0$
Locus of the foot of the perpendicular drawn from the centre upon any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, is
The eccentricity of an ellipse is $2/3$, latus rectum is $5$ and centre is $(0, 0)$. The equation of the ellipse is
Point $'O' $ is the centre of the ellipse with major axis $AB$ $ \&$ minor axis $CD$. Point $F$ is one focus of the ellipse. If $OF = 6 $ $ \&$ the diameter of the inscribed circle of triangle $OCF$ is $2, $ then the product $ (AB)\,(CD) $ is equal to
Let $P$ be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let the line passing through $P$ and parallel to $y$-axis meet the circle $x^2+y^2=9$ at point $Q$ such that $P$ and $Q$ are on the same side of the $x$-axis. Then, the eccentricity of the locus of the point $R$ on $P Q$ such that $P R: R Q=4: 3$ as $P$ moves on the ellipse, is :
Find the equation for the ellipse that satisfies the given conditions: Major axis on the $x-$ axis and passes through the points $(4,\,3)$ and $(6,\,2)$