If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\left( {a > b} \right)$ is twice the area of the ellipse, then the eccentricity of the ellipse is
$\frac{1}{{\sqrt 2 }}$
$\frac{{\sqrt 3 }}{2}$
$\frac{1}{{\sqrt 3 }}$
$\frac{1}{2}$
Which of the following points lies on the locus of the foot of perpendicular drawn upon any tangent to the ellipse, $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ from any of its foci?
If the lines $x -2y = 12$ is tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ at the point $\left( {3,\frac{-9}{2}} \right)$, then the length of the latus rectum of the ellipse is
The equation of the tangent at the point $(1/4, 1/4)$ of the ellipse $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{{12}} = 1$ is
If a tangent to the ellipse $x^{2}+4 y^{2}=4$ meets the tangents at the extremities of its major axis at $\mathrm{B}$ and $\mathrm{C}$, then the circle with $\mathrm{BC}$ as diameter passes through the point:
If the length of the latus rectum of an ellipse is $4\,units$ and the distance between a focus and its nearest vertex on the major axis is $\frac {3}{2}\,units$ , then its eccentricity is?