If statement $(p \rightarrow q) \rightarrow (q \rightarrow r)$ is false, then truth values of statements $p,q,r$ respectively, can be-
$FTF$
$TTT$
$FFF$
$FTT$
The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :
If the truth value of the statement $(P \wedge(\sim R)) \rightarrow((\sim R) \wedge Q)$ is $F$, then the truth value of which of the following is $F$ ?
Which of the following is an open statement
The negation of the statement
"If I become a teacher, then I will open a school", is
The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to