જો $H_{2}$ અણુના બેમાંથી એક ઇલેક્ટ્રૉન દૂર કરવામાં આવે તો આપણને હાઈડ્રોજન આણ્વિક આયન $H _{2}^{+}$ મળે. $H _{2}^{+}$ ની ધરાસ્થિતિમાં બે પ્રોટોન વચ્ચેનું અંતર લગભગ $1.5\;\mathring A$ છે અને ઇલેક્ટ્રૉન દરેક પ્રોટોનથી લગભગ $1 \;\mathring A$ અંતરે છે. આ તંત્રની સ્થિતિઊર્જા શોધો. સ્થિતિઊર્જાના શૂન્ય માટેની તમારી પસંદગી જણાવો.
The system of two protons and one electron is represented in the given figure.
Charge on proton $1, q_{1}=1.6 \times 10^{-19} \,C$
Charge on proton $2, q_{2}=1.6 \times 10^{-19} \,C$
Charge on electron, $q_{3}=-1.6 \times 10^{-19} \,C$
Distance between protons $1$ and $2, d _{1}=1.5 \times 10^{-10} \,m$
Distance between proton $1$ and electron, $d _{2}=1 \times 10^{-10}\, m$
Distance between proton $2$ and electron, $d _{3}=1 \times 10^{-10} \,m$
The potential energy at infinity is zero. Potential energy of the system,
$V=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} d_{1}}+\frac{q_{2} q_{3}}{4 \pi \epsilon_{0} d_{3}}+\frac{q_{1} q_{1}}{4 \pi \epsilon_{0} d_{2}}$
Substituting $\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \,N\,m ^{2} \,C ^{-2},$ we obtain
$V =\frac{9 \times 10^{9} \times 10^{-19} \times 10^{-19}}{10^{-10}}\left[-(16)^{2}+\frac{(1.6)^{2}}{1.5}+-(1.6)^{2}\right]$
$=-30.7 \times 10^{-19} \,J$
$=-19.2\, eV$
Therefore, the potential energy of the system is $-19.2\; eV.$
$2g$ દળ ધરાવતી બુલેટ પરનો વિદ્યુતભાર $2 \,\mu C$ છે.સ્થિર સ્થિતિમાંથી શરૂ કરી આ બુલેટનો વેગ $10 \,m/s$ જોઇતો હોય,તો તેને કેટલા વિદ્યુતસ્થિતિમાના તફાવતથી પ્રવેગિત કરવો જોઇએ?
$E = {e_1}\hat i + {e_2}\hat j + {e_3}\hat k$ વિદ્યુતક્ષેત્રમાં $Q$ વિદ્યુતભાર $\hat r = a\hat i + b\hat j$ સ્થાનાંતર કરાવવા કેટલું કાર્ય કરવું પડે?
$20\,C$ વિદ્યુતભારને $2\,cm$ જેટલું સ્થાનાંતર કરાવવા માટે $2\,J$ કાર્ય કરવું પડે છે, તો બિંદુઓ વચ્ચેનો વિદ્યુતસ્થિતિમાનનો તફાવત કેટલો થાય?
$5\ \mu C$ અને $10\ \mu C$ ના બે વિદ્યુતભારો એકબીજાથી $1\ m$ દૂર રહેલા ચે, તેમને હવે એકબીજાથી $0.5\ m$ અંતરે લાવવા કરવું પડતું કાર્ય ...... છે.
એકલ વિધુતભારના લીધે બાહ્ય ક્ષેત્રમાં વિધુતઊર્જાનું સૂત્ર મેળવો.