If mass is written as $\mathrm{m}=\mathrm{kc}^{\mathrm{p}} \mathrm{G}^{-1 / 2} \mathrm{~h}^{1 / 2}$ then the value of $P$ will be : (Constants have their usual meaning with $\mathrm{k}$ a dimensionless constant)

  • [JEE MAIN 2024]
  • A
    $1 / 2$
  • B
    $1 / 3$
  • C
    $2$
  • D
    $-1 / 3$

Similar Questions

The foundations of dimensional analysis were laid down by

Young's modulus of elasticity $Y$ is expressed in terms of three derived quantities, namely, the gravitational constant $G$, Planck's constant $h$ and the speed of light $c$, as $Y=c^\alpha h^\beta G^\gamma$. Which of the following is the correct option?

  • [IIT 2023]

The time dependence of a physical quantity $P$ is given by $ P = P_0 exp^{(-\alpha t^{2})} $ where $\alpha$ is a constant and $t$ is time. The constant $\alpha$ 

  • [AIPMT 1993]

A force defined by $F=\alpha t^2+\beta t$ acts on a particle at a given time $t$. The factor which is dimensionless, if $\alpha$ and $\beta$ are constants, is:

  • [NEET 2024]

Let $[ {\varepsilon _0} ]$ denote the dimensional formula of the permittivity of vacuum. If $M =$ mass, $L=$ length, $T =$ time and $A=$ electric current, then:

  • [JEE MAIN 2013]