If induction of magnetic field at a point is $B$ and energy density is $U$ then which of the following graphs is correct
Due to $10\, ampere$ of current flowing in a circular coil of $10\, cm$ radius, the magnetic field produced at its centre is $3.14 \times {10^{ - 3}}\,Weber/{m^2}$. The number of turns in the coil will be
A Helmholtz coil has pair of loops, each with $N$ turns and radius $R$. They are placed coaxially at distance $R$ and the same current $I$ flows through the loops in the same direction. The magnitude of magnetic field at $P$, midway between the centres $A$ and $C$, is given by (Refer to figure)
In the figure, shown the magnetic induction at the centre of there $arc$ due to the current in portion $AB$ will be
Magnitude of magnetic field (in $SI$ units) at the centre of a hexagonal shape coil of side $10\, cm$, $50$ turns and carrying current $I$ (Ampere) in units of $\frac{\mu_{0} I}{\pi}$ is
Find the magnetic field at the point $P$ in figure. The curved portion is a semicircle connected to two long straight wires.