If a variable line, $3x + 4y -\lambda = 0$ is such that the two circles $x^2 + y^2 -2x -2y + 1 = 0$ and $x^2 + y^2 -18x -2y + 78 = 0$ are on its opposite sides, then the set of all values of $\lambda $ is the interval
$(2, 17)$
$[13, 23]$
$[12, 21]$
$(23, 31)$
In the co-axial system of circle ${x^2} + {y^2} + 2gx + c = 0$, where $g$ is a parameter, if $c > 0$ then the circles are
The equation of the circle through the point of intersection of the circles ${x^2} + {y^2} - 8x - 2y + 7 = 0$, ${x^2} + {y^2} - 4x + 10y + 8 = 0$ and $(3, -3)$ is
The value of k so that ${x^2} + {y^2} + kx + 4y + 2 = 0$ and $2({x^2} + {y^2}) - 4x - 3y + k = 0$ cut orthogonally is
Let $C_1, C_2$ be two circles touching each other externally at the point $A$ and let $A B$ be the diameter of circle $C_1$. Draw a secant $B A_3$ to circle $C_2$, intersecting circle $C_1$ at a point $A_1(\neq A)$, and circle $C_2$ at points $A_2$ and $A_3$. If $B A_1=2, B A_2=3$ and $B A_3=4$, then the radii of circles $C_1$ and $C_2$ are respectively
Let $S = 0$ is the locus of centre of a variable circle which intersect the circle $x^2 + y^2 -4x -6y = 0$ orthogonally at $(4, 6)$ . If $P$ is a variable point of $S = 0$ , then least value of $OP$ is (where $O$ is origin)