If a unit positive charge is taken from one point to another over an equipotential surface, then
Work is done on the charge
Work is done by the charge
Work done is constant
No work is done
Two point charges of magnitude $+q$ and $-q$ are placed at $\left( { - \frac{d}{2},0,0} \right)$ and $\left( {\frac{d}{2},0,0} \right)$, respectively. Find the equation of the equipotential surface where the potential is zero.
This question has Statement $-1$ and Statement $-2$ Of the four choices given after the Statements, choose the one that best describes the two Statements
Statement $1$ : No work is required to be done to move a test charge between any two points on an equipotential surface
Statement $2$ : Electric lines of force at the equipotential surfaces are mutually perpendicular to each other
A uniformly charged solid sphere of radius $R$ has potential $V_0$ (measured with respect to $\infty$) on its surface. For this sphere the equipotential surfaces with potentials $\frac{{3{V_0}}}{2},\;\frac{{5{V_0}}}{4},\;\frac{{3{V_0}}}{4}$ and $\frac{{{V_0}}}{4}$ have rasius $R_1,R_2,R_3$ and $R_4$ respectively. Then
Draw an equipotential surface of two identical positive charges for small distance.
Two conducting hollow sphere of radius $R$ and $3R$ are found to have $Q$ charge on outer surface when both are connected with a long wire and $q'$ charge is kept at the centre of bigger sphere. Then which one is true