If a unit positive charge is taken from one point to another over an equipotential surface, then
Work is done on the charge
Work is done by the charge
Work done is constant
No work is done
Show that the direction of electric field at a given is normal to the equipotential surface passing through that point.
Which of the following figure shows the correct equipotential surfaces of a system of two positive charges?
A point charge $+Q$ is placed just outside an imaginary hemispherical surface of radius $R$ as shown in the figure. Which of the following statements is/are correct?
(IMAGE)
$[A]$ The electric flux passing through the curved surface of the hemisphere is $-\frac{\mathrm{Q}}{2 \varepsilon_0}\left(1-\frac{1}{\sqrt{2}}\right)$
$[B]$ Total flux through the curved and the flat surfaces is $\frac{Q}{\varepsilon_0}$
$[C]$ The component of the electric field normal to the flat surface is constant over the surface
$[D]$ The circumference of the flat surface is an equipotential
Describe schematically the equipotential surfaces corresponding to
$(a)$ a constant electric field in the $z-$direction,
$(b)$ a field that uniformly increases in magnitude but remains in a constant (say, $z$) direction,
$(c)$ a single positive charge at the origin, and
$(d)$ a uniform grid consisting of long equally spaced parallel charged wires in a plane
Equipotential surfaces associated with an electric field which is increasing in magnitude along the $x$-direction are