If a body of mass $0.98\, kg$ is made to oscillate on a spring of force constant $4.84\, N/m$, the angular frequency of the body is ..... $ rad/s$

  • A

    $1.22$

  • B

    $2.22$

  • C

    $3.22 $

  • D

    $4.22$

Similar Questions

For the damped oscillator shown in Figure the mass mof the block is $200\; g , k=90 \;N m ^{-1}$ and the damping constant $b$ is $40 \;g s ^{-1} .$ Calculate

$(a)$ the period of oscillation,

$(b)$ time taken for its amplitude of vibrations to drop to half of Its inittal value, and

$(c)$ the time taken for its mechanical energy to drop to half its initial value.

Two identical springs of spring constant $'2k'$ are attached to a block of mass $m$ and to fixed support (see figure). When the mass is displaced from equilibrium position on either side, it executes simple harmonic motion. The time period of oscillations of this sytem is ...... .

  • [JEE MAIN 2021]

A uniform cylinder of length $L$ and mass $M$ having cross-sectional area $A$ is suspended, with its length vertical, from a fixed point by a massless spring, such that it is half submerged in a liquid of density $\sigma $ at equilibrium position. When the cylinder is given a downward push and released, it starts oscillating vertically with a small amplitude. The time period $T$ of the oscillations of the cylinder will be

  • [JEE MAIN 2013]

Two oscillating systems; a simple pendulum and a vertical spring-mass-system have same time period of motion on the surface of the Earth. If both are taken to the moon, then-

A mass $m$ is vertically suspended from a spring of negligible mass; the system oscillates with a frequency $n$. What will be the frequency of the system if a mass $4 m$ is suspended from the same spring

  • [AIPMT 1998]