If $A$ and $B$ are any two non empty sets and $A$ is proper subset of $B$. If $n(A) = 4$, then minimum possible value of $n(A \Delta B)$ is (where $\Delta$ denotes symmetric difference of set $A$ and set $B$)
$2$
$1$
$0$
$4$
Examine whether the following statements are true or false :
$\{ a\} \in \{ a,b,c\} $
Write the following as intervals :
$\{ x:x \in R, - 4\, < \,x\, \le \,6\} $
$A = \{ x:x \ne x\} $ represents
Let $A=\{1,2,3,4,5,6\} .$ Insert the appropriate symbol $\in$ or $\notin$ in the blank spaces:
$ 2 \, ....... \, A $
How many elements has $P(A),$ if $A=\varnothing ?$