If $\alpha ,\;\beta ,\;\gamma $ are the geometric means between $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ respectively where $a,\;b,\;c$ are in A.P., then ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ are in
$A.P.$
$H.P.$
$G.P.$
None of the above
The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is
If ${n^{th}}$ terms of two $A.P.$'s are $3n + 8$ and $7n + 15$, then the ratio of their ${12^{th}}$ terms will be
The sum of first $n$ natural numbers is
Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is
Find the sum of all numbers between $200$ and $400$ which are divisible by $7.$