If $R$ and $L$ represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency
$\frac{R}{L}$
$\frac{L}{R}$
$\sqrt {\frac{R}{L}} $
$\sqrt {\frac{L}{R}} $
If $x$ and $a$ stand for distance then for what value of $n$ is given equation dimensionally correct the eq. is $\int {\frac{{dx}}{{\sqrt {{a^2}\, - \,{x^n}} \,}}\, = \,{{\sin }^{ - 1}}\,\frac{x}{a}} $
The position of a particle at time $t$ is given by the relation $x(t) = \left( {\frac{{{v_0}}}{\alpha }} \right)\,\,(1 - {e^{ - \alpha t}})$, where ${v_0}$ is a constant and $\alpha > 0$. The dimensions of ${v_0}$ and $\alpha $ are respectively
Planck's constant $h$, speed of light $c$ and gravitational constant $G$ are used to form a unit of length $L$ and a unit of mass $M$. Then the correct option$(s)$ is(are)
$(A)$ $M \propto \sqrt{ c }$ $(B)$ $M \propto \sqrt{ G }$ $(C)$ $L \propto \sqrt{ h }$ $(D)$ $L \propto \sqrt{G}$