If $A$ and $B$ are mutually exclusive events, then the value of $P (A$ or $B$) is
$0$
$-1$
$1$
None of these
A problem of mathematics is given to three students whose chances of solving the problem are $\frac{{1}}{{3}} , \frac{{1}}{{4}}$ and $\frac{{1}}{{5}}$ respectively. The probability that the question will be solved is
Let $\quad S =\left\{ M =\left[ a _{ ij }\right], a _{ ij } \in\{0,1,2\}, 1 \leq i , j \leq 2\right\}$ be a sample space and $A=\{M \in S: M$ is invertible $\}$ be an event. Then $P ( A )$ is equal to
For any event $A$
Two dice are thrown. The events $A, B$ and $C$ are as follows:
$A:$ getting an even number on the first die.
$B:$ getting an odd number on the first die.
$C:$ getting the sum of the numbers on the dice $\leq 5$
Describe the events $B$ or $C$
The probability that a marksman will hit a target is given as $1/5$. Then his probability of at least one hit in $10$ shots, is