यदि सरल रेखा $y = mx + c$, दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ की स्पर्श रेखा हो, तो $c$ का मान होगा
$0$
$3/m$
$ \pm \sqrt {9{m^2} + 4} $
$ \pm 3\sqrt {1 + {m^2}} $
यदि दीर्घवृत्त का लघुअक्ष $8$, उत्केन्द्रता $\frac{{\sqrt 5 }}{3}$ हो, तब दीर्घाक्ष होगा
दीर्घवृत्त $9{x^2} + 25{y^2} = 225$ की उत्क्रेन्द्रता है
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1$ की नियताओं के बीच की दूरी है
रेखा $y = x +1$, दीर्घवृत $\frac{ x ^2}{4}+\frac{ y ^2}{2}=1$ को दो बिन्दुओं $P$ तथा $Q$ पर मिलती है। यदि $PQ$ व्यास वाले वृत की त्रिज्या $r$ हो तो $(3 r )^2$ बराबर होगा-
$\frac{|x|}{2}+\frac{|y|}{3}=1$ के बाहर और दीर्घवृत्त $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ के अंदर के क्षेत्र का क्षेत्रफल (वर्ग इकाई में) है