If $\left| {\,\begin{array}{*{20}{c}}{x - 1}&3&0\\2&{x - 3}&4\\3&5&6\end{array}\,} \right| = 0$, then $x =$

  • A

    $0$

  • B

    $2$

  • C

    $3$

  • D

    $1$

Similar Questions

If the system of equations $x + 2y + 3z = 4 , x + py + 2z = 3 , x + 4y + \mu z = 3$ has an infinite number of solutions , then :

If ${2^{{a_1}}},{2^{{a_2}}},{2^{{a_3}}},{......2^{{a_n}}}$ are in $G.P.$ then $\left| {\begin{array}{*{20}{c}}
  {{a_1}}&{{a_2}}&{{a_3}} \\ 
  {{a_{n + 1}}}&{{a_{n + 2}}}&{{a_{n + 3}}} \\ 
  {{a_{2n + 1}}}&{{a_{2n + 2}}}&{{a_{2n + 3}}} 
\end{array}} \right|$ is equal to

$\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,which of the following is a factor for the above determinant

Consider the system of linear equations

$-x+y+2 z=0$

$3 x-a y+5 z=1$

$2 x-2 y-a z=7$

Let $S_{1}$ be the set of all $\mathrm{a} \in {R}$ for which the system is inconsistent and $S_{2}$ be the set of all $a \in {R}$ for which the system has infinitely many solutions. If $n\left(S_{1}\right)$ and $n\left(S_{2}\right)$ denote the number of elements in $S_{1}$ and $\mathrm{S}_{2}$ respectively, then

  • [JEE MAIN 2021]

$\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{1 + x}&1\\1&1&{1 + y}\end{array}\,} \right| = $