If $^n{C_{12}} = {\,^n}{C_6}$, then $^n{C_2} = $
$72$
$153$
$306$
$2556$
Each of the $10$ letters $A,H,I,M,O,T,U,V,W$ and $X$ appears same when looked at in a mirror. They are called symmetric letters. Other letters in the alphabet are asymmetric letters. How many three letters computer passwords can be formed (no repetition allowed) with at least one symmetric letter ?
Let
$S _1=\{( i , j , k ): i , j , k \in\{1,2, \ldots, 10\}\}$
$S _2=\{( i , j ): 1 \leq i < j +2 \leq 10, i , j \in\{1,2, \ldots, 10\}\},$
$S _3=\{( i , j , k , l): 1 \leq i < j < k < l, i , j , k , l \in\{1,2, \ldots ., 10\}\}$
$S _4=\{( i , j , k , l): i , j , k$ and $l$ are distinct elements in $\{1,2, \ldots, 10\}\}$
and If the total number of elements in the set $S _t$ is $n _z, r =1,2,3,4$, then which of the following statements is (are) TRUE?
$(A)$ $n _1=1000$ $(B)$ $n _2=44$ $(C)$ $n _3=220$ $(D)$ $\frac{ n _4}{12}=420$
Find the number of ways of selecting $9$ balls from $6$ red balls, $5$ white balls and $5$ blue balls if each selection consists of $3$ balls of each colour.
For non-negative integers $s$ and $r$, let
$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
For positive integers $m$ and $n$, let
$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$
where for any nonnegative integer $p$,
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$
Then which of the following statements is/are $TRUE$?
$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$
$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$
$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$
$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$
A boy needs to select five courses from $12$ available courses, out of which $5$ courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is