If $^n{C_r}$ denotes the number of combinations of $n$ things taken $r$ at a time, then the expression $^n{C_{r + 1}} + {\,^n}{C_{r - 1}} + \,2 \times {\,^n}{C_r}$ equals
$^{n + 2}{C_r}$
$^{n + 2}{C_{r + 1}}$
$^{n + 1}{C_r}$
$^{n + 1}{C_{r + 1}}$
The set $S = \left\{ {1,2,3, \ldots ,12} \right\}$ is to be partitioned into three sets $A,\,B,\, C$ of equal size . Thus $A \cup B \cup C = S$ અને $A \cap B = B \cap C = C \cap A = \emptyset $ . The number of ways to partition $S$ is
The number of ways in which any four letters can be selected from the word ‘$CORGOO$’ is
Let $\left(\begin{array}{l}n \\ k\end{array}\right)$ denotes ${ }^{n} C_{k}$ and $\left[\begin{array}{l} n \\ k \end{array}\right]=\left\{\begin{array}{cc}\left(\begin{array}{c} n \\ k \end{array}\right), & \text { if } 0 \leq k \leq n \\ 0, & \text { otherwise }\end{array}\right.$
If $A_{k}=\sum_{i=0}^{9}\left(\begin{array}{l}9 \\ i\end{array}\right)\left[\begin{array}{c}12 \\ 12-k+i\end{array}\right]+\sum_{i=0}^{8}\left(\begin{array}{c}8 \\ i\end{array}\right)\left[\begin{array}{c}13 \\ 13-k+i\end{array}\right]$
and $A_{4}-A_{3}=190 \mathrm{p}$, then $p$ is equal to :
How many $6 -$ digit numbers can be formed from the digits, $0,1,3,5,7$ and $9$ which are divisible by $10$ and no digit is repeated?
If $^{2017}C_0 + ^{2017}C_1 + ^{2017}C_2+......+ ^{2017}C_{1008} = \lambda ^2 (\lambda > 0),$ then remainder when $\lambda $ is divided by $33$ is-