If $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ are in $H.P.$, then

  • A

    ${a^2}b,\,{c^2}a,\,{b^2}c$ are in $A.P.$

  • B

    ${a^2}b,\,{b^2}c,\,{c^2}a$ are in $H.P.$

  • C

    ${a^2}b,\,{b^2}c,\,{c^2}a$ are in $G.P.$

  • D

    None of these

Similar Questions

Let $a_n, n \geq 1$, be an arithmetic progression with first term $2$ and common difference $4$ . Let $M_n$ be the average of the first $n$ terms. Then the sum $\sum \limits_{n=1}^{10} M_n$ is

  • [KVPY 2019]

If the sum of a certain number of terms of the $A.P.$ $25,22,19, \ldots \ldots .$ is $116$ Find the last term

Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$

The $8^{\text {th }}$ common term of the series $S _1=3+7+11+15+19+\ldots . .$ ; $S _2=1+6+11+16+21+\ldots .$ is $.......$.

  • [JEE MAIN 2023]

If $\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$ are in an $A.P.$ and $\log _e \mathrm{a}-$ $\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ are also in an $A.P,$ then $a: b: c$ is equal to

  • [JEE MAIN 2024]