If $A$ and $B$ be any two sets, then $(A \cap B)'$ is equal to
$A' \cap {\rm B}'$
$A' \cup B'$
$A \cap B$
$A \cup B$
Let $U=\{1,2,3,4,5,6,7,8,9\}, A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\} .$ Find
$B^{\prime}$
Let $\mathrm{U}$ be universal set of all the students of Class $\mathrm{XI}$ of a coeducational school and $\mathrm{A}$ be the set of all girls in Class $\mathrm{XI}$. Find $\mathrm{A}'.$
Fill in the blanks to make each of the following a true statement :
${{\mathop{\rm U}\nolimits} ^\prime } \cap A = \ldots $
If $A$ is any set, then
Let $U = \{ 1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10\} $, $A = \{ 1,\,2,\,5\} ,\,B = \{ 6,\,7\} $, then $A \cap B'$ is