If $A$ and $B$ are two sets, then $A × B = B × A$ iff
$A \subseteq B$
$B \subseteq A$
$A = B$
None of these
State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
If $A$ and $B$ are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs $(x, y)$ such that $x \in A$ and $y \in B.$
If $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$ then $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ is equal to
If $(1, 3), (2, 5)$ and $(3, 3)$ are three elements of $A × B$ and the total number of elements in $A \times B$ is $6$, then the remaining elements of $A \times B$ are
Let $A$ and $B$ be two sets such that $n(A)=3$ and $n(B)=2 .$ If $(x, 1),(y, 2),(z, 1)$ are in $A \times B$, find $A$ and $B$, where $x, y$ and $z$ are distinct elements.
Let $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{4,5,6\} .$ Find
$A \times(B \cup C)$