જો $A = \{ 2,\,4,\,5\} ,\,\,B = \{ 7,\,\,8,\,9\} ,$ તો $n(A \times B)$ =
$6$
$9$
$3$
$0$
ધારો કે $A=\{1,2\}, B=\{1,2,3,4\}, C=\{5,6\}$ અને $D=\{5,6,7,8\},$ તો નીચેનાં પરિણામો ચકાસો : $A \times C$ એ $B \times D$ નો ઉપગણ છે.
જો $P=\{1,2\},$ તો $P \times P \times P$ શોધો.
જો $n(A)=3$ અને $n(B)=2$ હોય તેવા બે ગણો $A$ અને $B$ હોય અને ભિન્ન ઘટકો $x, y$ અને $z$ માટે $(x, 1),(y, 2),(z, 1)$ એ $A \times B$ ના ઘટકો હોય તો $A$ અને $B$ શોધો.
જો $A = \{ a,\,b\} ,\,B = \{ c,\,d\} ,\,C = \{ d,\,e\} ,\,$તો $\{ (a,\,c),\,(a,\,d),\,(a,\,e),\,(b,\,c),\,(b,\,d),\,(b,\,e)\} $ એ . . . . . બરાબર છે.
જો $A=\{1,2,3\}, B=\{3,4\}$ અને $C=\{4,5,6\},$ તો શોધો. $(A \times B) \cap(A \times C)$