If $A$ and $B$ are any two sets, then $A \cup (A \cap B) $ is equal to
$A$
$B$
${A^c}$
${B^c}$
If $A, B$ and $C$ are any three sets, then $A -(B \cup C)$ is equal to
Find the union of each of the following pairs of sets :
$A=\{a, e, i, o, u\} B=\{a, b, c\}$
Show that for any sets $\mathrm{A}$ and $\mathrm{B}$, $A=(A \cap B) \cup(A-B)$ and $A \cup(B-A)=(A \cup B).$
Find the union of each of the following pairs of sets :
$A=\{1,2,3\}, B=\varnothing$
Let $P=\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ and $Q=\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ be two sets. Then