If $A$ and $B$ are any two sets, then $A \cup (A \cap B) $ is equal to

  • A

    $A$

  • B

    $B$

  • C

    ${A^c}$

  • D

    ${B^c}$

Similar Questions

Is it true that for any sets $\mathrm{A}$ and $\mathrm{B}, P(A) \cup P(B)=P(A \cup B) ?$ Justify your answer.

If $X$ and $Y$ are two sets such that $X$ has $40$ elements, $X \cup Y$ has $60$ elements and $X$ $\cap\, Y$ has $10$ elements, how many elements does $Y$ have?

State whether each of the following statement is true or false. Justify you answer.

$\{2,6,10,14\}$ and $\{3,7,11,15\}$ are disjoint sets.

The shaded region in the given figure is

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $A \cap D$