If ${ }^{20} \mathrm{C}_{\mathrm{r}}$ is the co-efficient of $\mathrm{x}^{\mathrm{r}}$ in the expansion of $(1+x)^{20}$, then the value of $\sum_{r=0}^{20} r^{2}\,\,{ }^{20} C_{r}$ is equal to :

  • [JEE MAIN 2021]
  • A

    $420 \times 2^{19}$

  • B

    $380 \times 2^{19}$

  • C

    $380 \times 2^{18}$

  • D

    $420 \times 2^{18}$

Similar Questions

The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is

In the expansion of ${(1 + x)^{50}},$ the sum of the coefficient of odd powers of $x$ is

If ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, then $\frac{{{t_n}}}{{{S_n}}}$ is equal to

  • [AIEEE 2004]

Statement $-1$: $\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right) = \left( {n + 2} \right){2^{n - 1}}$

Statement $-2$:$\;\mathop \sum \limits_{r = 0}^n \left( {r + 1} \right)\left( {\begin{array}{*{20}{c}}n\\r\end{array}} \right){x^r}\; = {\left( {1 + x} \right)^n} + nx{\left( {1 + x} \right)^{n - 1}}$

  • [AIEEE 2008]

$\sum_{\mathrm{k}=0}^{20}\left({ }^{20} \mathrm{C}_{\mathrm{k}}\right)^{2}$ is equal to :

  • [JEE MAIN 2021]