If $A$ and $B$ are sets, then $A \cap (B -A)$ is
Show that $A \cup B=A \cap B$ implies $A=B$.
If $n(A) = 3$, $n(B) = 6$ and $A \subseteq B$. Then the number of elements in $A \cup B$ is equal to
If $A \cap B = B$, then
Show that $A \cap B=A \cap C$ need not imply $B = C$