If $b$ is the first term of an infinite $G.P$ whose sum is five, then $b$ lies in the interval
$\left( { - \infty ,-10} \right)$
$\left( {10,\infty } \right)$
$\left( {0,10} \right)$
$\left( { - 10,0} \right)$
The sum of some terms of $G.P.$ is $315$ whose first term and the common ratio are $5$ and $2,$ respectively. Find the last term and the number of terms.
Find the sum to indicated number of terms in each of the geometric progressions in $\left.x^{3}, x^{5}, x^{7}, \ldots n \text { terms (if } x \neq\pm 1\right)$
The value of ${a^{{{\log }_b}x}}$, where $a = 0.2,\;b = \sqrt 5 ,\;x = \frac{1}{4} + \frac{1}{8} + \frac{1}{{16}} + .........$to $\infty $ is
The number $111..............1$ ($91$ times) is a
If in a $G.P.$ of $64$ terms, the sum of all the terms is $7$ times the sum of the odd terms of the $G.P,$ then the common ratio of the $G.P$. is equal to